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Recently, Chae, Kim, and Rho proposed a new gas-kinetic BGK scheme [1]. In their
approach, they modified the EFM or KFVS flux component in a gas-kinetic scheme through
techniques based on Mach number splitting and Osher’s linear subpath solution; see Eqs. (30)
and (31) in [1]. In order to demonstrate the improvement in the numerical results obtained
from their new scheme, in Figs. (12) and (14) they also included simulation results from
another gas-kinetic BGK scheme, which was implicitly referred to Xu and Prendergast’s
BGK method [2]. In this letter, we point out the difference between the BGK scheme re-
ferred in paper [1] and Xu and Prendergast’s BGK scheme [2]. Also, test cases similar to
those presented in [1] will be calculated by Xu and Prendergast’s BGK method.

The referred BGK scheme in the Chae-Kim-Rho paper is based on Eq. (19) for the flux
evaluation,

f (0, 0, t, u, v, ξ) = (1− e−t/τ
)
g0+ e−t/τ f0(−ut,−vt)

+ τ(−1+ e−t/τ
)
(uā+ vb̄)g0

+ te−t/τ (uā+ vb̄)g0, (0.1)

and the simulation results in Figs. (12) and (14) come from the above equation. If we
compare the above equation with Eq. (3.5) in Xu and Prendergast’s BGK scheme [2], we
can see that Eq. (0.1) is different from Eq. (3.5). The gas distribution function (3.5) in [2]
is the following (extended to the 2D case):

f (0, 0, t, u, v, ξ) = (1− e−t/τ
)
g0+ e−t/τ f0(−ut,−vt)

+ τ(−1+ e−t/τ
)
(uā+ vb̄+ A)g0

+ te−t/τ (uā+ vb̄)g0+ t Ag0. (0.2)
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The main difference between Eq. (0.1) and Eq. (0.2) is that Eq. (0.1) ignores all terms
related toA. In the following, we explain that Eq. (0.1) is inconsistent with the Chapman–
Enskog expansion for the Navier–Stokes solution. From the gas-kinetic theory [3], the
gas distribution function corresponding to the Navier–Stokes solution can generally be
expressed as

fns = g+ φ,

whereg is the equilibrium state andφ is the non-equilibrium part. The non-equilibrium
partφ makes no contribution to the macroscopic conservative flow variables,∫

φ9d4 = 0,

where9 = [1, u, v, 1
2(u

2+ v2+ ξ2)]T and d4 = dξ1dξ2 · · ·dξK dudv. Equation (0.1)
does not correspond to the above Chapman–Enskog expansion for the viscous flow. This
can be seen clearly in the smooth flow region. In this region, Eq. (0.1) goes to

g = g0(1− τ(uā+ vb̄)).

In contrast, Eq. (0.2) gives

g = g0(1− τ(uā+ vb̄+ A)+ t A),

which has been proved and tested to be the Chapman–Enskog expansion for the viscous
solution [4, 8]. TheA term contributes to both the time evolutiong0t A and the physical
viscous term−τ(uā+ vb̄+ A)g0. The conservation requirement for the non-equilibrium
part is satisfied automatically, because∫

g0(uā+ vb̄+ A)9d4 = 0 (0.3)

is exactly the equation to evaluateA in the smooth flow region. Therefore, in Xu and
Prendergast’s BGK method [2], the corresponding non-equilibrium part in the gas distribu-
tion function isφ = −τ(uā+ vb̄+ A)g0, which is different from the non-equilibrium part
φ = −τ(uā+ vb̄)g0 in [1]. The non-equilibrium part in [1] cannot satisfy the requirement
of
∫
φ9d4 = 0. Even for the steady state calculation, once there are spatial gradients in

the flow variables, such that̄a 6= 0 or b̄ 6= 0, the termA will not be zero (see Eq. (0.3)) and
it must be kept for the viscous flow calculations.

After having the integral solution (0.2) of the BGK model, in order to test it numerically
we need to define the particle collision timeτ . As shown in [4], there are two parts in the
collision time,

τ = µ

p
+1t

pl − pτ

pl + pτ
, (0.4)

whereµ is the viscosity coefficient,p is the pressure, and1t is the time step. The first part
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in the above equation corresponds to the physical viscosity and the second one gives the
artificial dissipation in the case of flow discontinuities. With Xu and Prendergast’s BGK
distribution (0.2), we calculate the similar test cases, i.e., shock boundary layer interaction
with M= 2.0 and Re= 2.96× 105, and laminar boundary layer with Re= 104 and M= 0.2.
In both cases, the time step1t is determined by the CFL condition with Courant number
equal to 0.7. The non-slip boundary condition in both cases is implemented by generating
two ghost cells inside the boundary with reversed fluid velocities with respect to the fluid
above the boundary. Also, the van Leer limiter is used directly on all conservative variables
for the construction of the initial slope inside each cell. All steady state solutions are
obtained by the integration of the unsteady flow code. The codes of Xu and Prendergast’s
BGK scheme [1] for the above two cases can be obtained from the author’s Web page
(http://www.math.ust.hk/˜makxu). The clustered rectangular mesh for the laminar boundary
layer case and the simulation results for both cases are shown in Figs. 1–3. Since the mesh
for Fig. (12) in [1] is generated according to the boundary layer solution, the boundary layer
has the same number of grid points everywhere. In our calculation, the boundary layer has
different numbers of grid points at different locations. As we can see from these figures,
Xu and Prendergast’s BGK scheme presents different results in comparison with Figs. (12)
and (14) in [1]. During this work, it is also noticed that the cited experimental data in [1] for
Fig. (14) seem different from the experimental data in [6, 7] even though they are assumed
to come from the same experiment [5].

In conclusion, the BGK scheme in [1] is different from Xu and Prendergast’s BGK method
in [2]. In terms of the viscous boundary layer and shock boundary layer interaction cases,
Xu and Prendergast’s original scheme [2] and all other recent improvements [4] could do
a very good job. In fact, the improvement necessary for the BGK scheme is the correct
capture of the viscous shock structure. A nearly complete gas-kinetic BGK scheme for the
correct capture of both boundary layer and shock structure has been proposed recently [9].

FIG. 1. 120× 30 stretched rectangular mesh for the laminar boundary layer calculation. The mesh covers a
computational domain [−42, 120]× [0, 130].
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FIG. 2. U and V velocity distributions at the locationsx = 6.438 (circles) andx = 34.469 (cross sign). Both
solid lines are the exact solutions. Free stream conditions are M= 0.2 and Re= 104.

FIG. 3. Shock boundary layer interaction case at M= 2.0 and Re= 2.96× 105 on a mesh of 106× 66 grid
points. Skin friction coefficientcf along the flat plate is compared with the experimental data.
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